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A numerical experiment has been carried out to evaluate two of the methods 
available for finding the time-averaged mean velocity and the Reynolds stresses of 
a turbulent flow field using hot wires. The conventional method is based on the series 
expansion of the response equation, subsequent truncation of the series and time 
averaging. The improved method is based on squaring,and time averaging without 
neglecting any terms. The method adopted to evaluate these two methods is based 
on the Monte Carlo simulation of a pseudo turbulent flow field using random-number 
generators and the corresponding hot-wire response, for a prescribed set of conditions, 
by assuming an appropriate model for the hot-wire response. The simulated hot-wire 
response and the calibration constants are then perturbed about their mean values 
to study the effects of errors in these quantities. The perturbed response is used to 
compute the time-averaged flow field by the two methods. The deviation of these 
values from the generated pseudo values, averaged over large number of trials, is 
used as the criterion to evaluate the methods. This procedure is also used to estimate 
the errors due to truncation in the conventional method, to study the effect of 
turbulence-intensity levels and t o  study the effects of measurement errors. The 
results indicate that the choice of the method for determining the time-averaged 
quantities should be based on the turbuleme-intensity level and the measurement 
errors likely to be encountered. The conventional method yields reliable mean- 
velocity results for turbulence intensities as high as 50 % with second-order turbulence 
correction. If measurement errors are within reasonable limits and the turbulence 
level is below 20%, the conventional method yielcts reliable results for Reynolds 
stresses. The improved method should be used to determine the time-averaged flow 
field for turbulence intensity above 4&50%. The error in the yaw sensitivity 
parameter k has an insignificant effect on the mean velocity and Reynolds stresses 
computed by both methods. By accurately determining the sensitivity s of the hot 
wire, the accuracy of the measured mean velocity and Reynolds stresses can be 
improved significantly. An improved method of carrying out the uncertainty 
analysis for measurements, based on the Monte Carlo technique, has also been 
outlined. 

1. Introduction 
The basic problem in using hot-wire anemometry for turbulence measurements is 

in developing the response equation relating the measured hot-wire voltage to the 
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velocity components. The common approach to this problem has been to use the 
empirical heat-transfer law put forth by King (1914) in the form 

Here ENL is the anemometer nonlinear output voltage, U,,, is the effective cooling 
velocity and A,  B and n are the calibration constants. The use of this equation raises 
problems due to the nonlinearity of the equation, which introduces errors in 
measurements of highly turbulent flow fields and due to the dependence of the 
constants B and n on the velocity. In practice, to overcome these problems 
linearizing circuits are generally used to reduce the form of the equation to 

where E and s are the linearized voltage output and calibration constant respectively. 
However, the use of commercially available linearizers requires an estimate of the 
constants A, B and n beforehand. The next part of the problem is to arrive at an 
analytical expression for U,,, in terms of the components of velocity in the 
wire-oriented coordinates. This involves knowledge of the directional sensitivities of 
the hot wire as well. Though there are several expressions in use for Ueff, the most 
commonly used one is due to Jorgensen (1971) and is given by 

where U,, U ,  and U,, are the normal, tangential and binormal components of the 
velocity with respect to the wire and k and h are the yaw and pitch sensitivities of 
the hot wire. In  a turbulent flow, the components UN, U,  and U B N  can be written 
in terms of the mean and fluctuating velocity components in the three orthogonal 
directions, the yaw angle (a) and the pitch angle (4). U,,, would then represent the 
instantaneous effective cooling velocity and E the instantaneous voltage output. The 
constants involved (8 ,  k and h) are generally obtained from calibrations. 

Essentially there are two methods in use for the measurement of mean velocities 
and Reynolds stresses of a turbulent flow field. In the first method, a 3-sensor probe 
is employed together with online data processing of the instantaneous flow field. In 
principle the method involves no further assumption other than that involved in 
arriving at (2) and (3). Implementing the method, however, is very expensive and 
hence beyond the reach of most of the hot-wire users. Further, instantaneous 
flow-field data is not in a very usable form for an engineer. The other commonly used 
method involves time averaging the response equation to derive expressions for the 
mean velocities and Reynolds stresses in terms of the mean and r.m.8. voltages of 
the hot wire. This method can be used in conjunction with a single wire, a two-wire 
sensor or a triple-wire sensor and a digital or analog data processing system. This 
paper is concerned only with the time-averaging scheme. 

The time-averaging technique can in turn be carried out in two different ways. 
From (2) and (3), we can see that the hot-wire output is directly proportional to the 
effective velocity, which in turn is composed of the vector components of the velocity 
field. This implies that the components occur under a square-root sign and a simple 
time averaging of such an expression would lead to no solution of the problem on 
hand. Hence to derive the required expressions in the conventional method (see 
Hinze 1959; Champagne & Sleicher 1967), the equation for U,,, is first expanded in 
a series. To make the problem tractable the series is truncated assuming that the 
third- and higher-order terms are negligible compared with the second-order terms. 
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The resulting response equation, after truncation, is then time averaged. Manipulation 
of this equation then leads to a closed-form solution for the mean and Reynolds 
stresses. This will be called Method I. Since all the difficulty is caused by the 
square-root sign, the other time-averaging method (see Rodi 1975; Acrivlellis 1977) 
logically involves squaring (2) and (3) before combining them to obtain the 
instantaneous-response equation. This equation is t p n  time averaged and an exact 
solution for the mean velocities and Reynolds stresses obtained. These equations are 
expressed in terms of the time average of the voltage squares as against the mean 
and r.m.s. voltages of Method I. The second method described will be referred to as 
Method 11. 

The usual criticism of Method I is as follows. The method is limited to the 
investigation of flow fields of low turbulence intensity because of the series expansion 
and consequent truncation of the response equation. In extreme cases, the expansion 
itself is mathematically invalid. Several authors such as Guitton (1968) and Heskestad 
(1965), have attempted to correct the results of this method by including higher-order 
terms. They measured some of these terms and made simplifying assumptions 
regarding the other terms to arrive at a correction formula. However, such corrections 
are not universal and their validity is doubtful. Method I1 has come to be accepted 
as a better approach because the time-averaged response expression is provided 
without neglecting any terms. However, this method too is not without criticism. 
Since the expressions are based on squared voltages, an additional ‘squarer’ is 
required in the measurement system in the case of analog data analysis. The other 
point of contention is that the mean and the fluctuating velocity fields cannot be 
separated from each other in the resulting equation. The implication is that the mean 
field be either measured aeparately by another device or recourse be taken to Method I. 
Sampath, Ganesan & Gowda (1982) usqd the Pitot-static probe to obtain the mean 
velocities. This is not advantageous in view of the time factor, limitations of the 
probe at  low speeds and the correction required for the mean velocity due to 
turbulence. Furthermore, the advantage obtained through the use of a hot wire is 
forfeited. Rodi (1975) developed a hybrid version of Methods I and 11, in which the 
mean velocities are determined from the mean voltage signal and the fluctuating 
velocity components from the squared signal. Thiq procedure not only introduces 
approximation at this stage but also requires additional measurements of the mean 
voltages as well and hence it is time consuming. The mean velocities in a three- 
dimensional flow field can also be determined using an inclined hot wire following 
the method outlined by Moussa & Eskinazi (1975). However, this would require 
extensive calibrations and hence, obviously, much more time. It is also thought that 
as the mean and fluctuating fields are coupled, this method is more suited for highly 
turbulent flow fields. 

Attempts have been made by Rodi and Acrivlellis to compare these two methods 
of turbulence measurements in flow fields of different turbulence intensities. Rodi 
evaluated them in the developed region of a free, round, air jet. From his experiments, 
Rodi concluded that his results obtained using Method I1 were more reliable and 
consistent than those obtained by Method I. However, his measurements and those 
of Wygnanski & Fiedler (1969), both using Method I, showed considerable difference 
and he attributed this to the thermal-wake interference of the x-wire used by the 
latter. Rodi’s results for Method I1 were 10-15 % higher than for Method I. However, 
the results of Sampath, Ganesan & Gowda (1983) for shear stress, also obtained in 
the free jet using Method 11, were lower than that obtained by Wygnanski & Fiedler 
using Method I. In other words, if the results of Rodi and Sampath et al. for the shear 
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stress obtained by Method 11, were compared they would show a discrepancy of 
anywhere between 20-25 yo (Sampath et al. 1983). It should be pointed out that Rodi 
has not compared these two methodH on a common basis since his approach to solving 
by Method I1 required additional and extensive calibrations, which were not used 
for computation by Method I. 

Acrivlellis evaluated these methods in a fully developed turbulent pipe flow. He 
first gives a correct system of equations to determine the mean velocity and Reynolds 
stresses by Method I1 (his equations (15), (18)) (19) and (20)). At a later stage, in order 
to overcome the disadvantage of using a ‘squarer’ and to separate the mean and 
fluctuating flow fields, he arrives a t  yet another, though incorrect, system of 
equations (his equations (29)-(33)), as was pointed out by Bartenwerfer (1979). Since 
Acrivlellis’ results were based on incorrect equations no conclusions could be drawn 
regarding the comparison in the low-turbulence case. 

From the foregoing discussion, it can be seen that attempts to  compare the 
methods have not been carried out properly and the comparison is incomplete in 
many aspects. The comparison was not proper because different calibration procedures 
were used and an uncertainty analysis was not included in the final analysis to 
conclude whether the differences, if any, were significant. What is lacking in the 
comparison is an independent standard with which to  compare these methods on a 
common basis in order to decide without doubt which method is more suitable and 
under what circumstances. The comparison is not complete for the following reasons. 
The effect of turbulence intensity needs to  be studied thoroughly for this limits the 
use of these methods. At present there is no conclusive study outlining the limitation 
and use of these methods. Further, there is a need to evaluate the effects of 
measurement errors in voltages and uncertainty in the calibration constants. This 
would help in determining the accuracy in calibration parameters required to  obtain 
the desired uncertainty in the computed results of the two methods. 

It is, however, not feasible to carry out an experimental investigation to compare 
these two methods taking care to satisfy all the above mentioned conditions. For 
example, it is not experimentally possible to  generate data to  serve as a standard 
for comparison with another measuring device since each device has its own 
limitations and associated measurement errors. At present, however, the hot wires 
are still believed to  be the most reliable device for turbulence measurement. This 
precludes the availability of an experimental standard. Further, many of the factors 
such as turbulence intensity and errors in measurements are not easily controlled in 
a laboratory situation. Hence, it is not easy to study their effects. Therefore, the 
purpose of this study is to  establish a suitable numerical approach to  study the 
problem elucidated. The scheme would include the generation of a pseudo standard 
for comparing the two methods. Items of particular interest are an estimate of the 
range of validity of the methods with regards to turbulence intensity, an estimate 
of the truncation errors in Method I, the effects of measurement errors and 
uncertainty in calibration constants. This information may possibly be useful in 
explaining some of the discrepancies found in the experimental comparison of these 
methods by other authors. Such a st,udy is believed to  provide a useful guideline for 
turbulence measurement with hot wires. Experiments would be in a better position 
to choose a method depending on their requirements. 

A statistical approach based on the Monte Carlo simulation technique (see Brown 
1956) is adopted here. This approach was used by Swaminathan et al. (1984) to  carry 
out some studies of the calibration of hot wires. The design of the numerical 
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FIQURE 1. Schematic of wire-oriented velocity components. 

experiment is based on the response equation alluded to earlier and the generation 
of pseudo turbulence using random-number generators. After assigning typical 
values to the mean velocity and calibration constants, the pseudo turbulent field is 
used to generate the voltages with the assumed response equation. Using random- 
number generators the voltages generated and the calibration constants are again 
perturbed about their mean values with preset standard deviations. Use of the 
perturbed values in the systems of equations for Methods I and I1 leads to the 
corresponding solutions for mean and fluctuating velocity fields. This can be 
compared with the pseudo field generated. The whole experiment is repeated over 
a large number of trials to obtain an ensemble average of the effects required. 

2. Basic equations 
The present analysis is restricted to one-dimensional mean flow. The turbulence 

is however three-dimensional in nature. The hot-wire axis is assumed to be aligned 
with the mean flow direction in order to simplify the problem. The instantaneous 
velocity vector is split into components with respect to the wire-oriented coordinate 
system (see figure 1). It is to be noted that the instantaneous velocity is composed 
of the mean velocity (U)  in the x-direction and the fluctuating velocity components 
and (u, v and w )  in the x-, y- and z-directions respectively. In figure 1, the hot wire 
is located in the (x,y)-plane with the normal of the wire forming a yaw angle of a 
with the mean flow direction, which is along the x-axis. From the geometry i t  can 
be seen that 

(4) 1 UN = (O+U) cosa+v sina, 
U,  = -(O+u) sina+v cosa, 

UBN = w. 

Introducing (4) into (3), the effective cooling velocity is obtained as 

U,,, = [{( O+ u )  cos a + v sin a}2 + h2w2 + k2{v cos a - (O+ u) sin ( 5 )  
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The equation which describes the response of the hot wire to the assumed turbulent 
flow field is then obtained by substituting ( 5 )  into (2) to get 

Ex'(a) = [{( u+ u) cos a + v sin a}2 + h2w2 + k2{v cos a - (V+ u) sin (6) S 

Here, Ex,(a) is the response of the hot-wire in the (z,y)-plane at a yaw angle a. It 
is a simple matter to obtain the corresponding expression for the hot-wire response 
in the (z,z)-plane by replacing v by w and w by v in (6). Now, (6) is time averaged 
to derive expressions for the mean velocity and the Reynolds stresses. As indicated 
earlier, to obtain the equations for Method I, the right-hand side of (6) is expanded 
in a series and the resulting equation is time averaged to acquire the response of the 
hot wire. For Method 11, the equation is first squared and then time averaged. As 
many equations as the required number of unknowns are generated by orienting the 
hot wire at different yaw angles in different planes and using the time-averaged 
response equation. The expression for the mean velocity Band the Reynolds stresses 
u2, v2, w2 and UV will be indicated below for both the methods. The details of deriving 
these equations can be found in Rodi (1975) and Acrivlellis (1977). 

_ - _  

Method I .  
Mean Velocity : 

Reynolds Stresses : 

- 
- 2 - v -  = 45)+eiL,(a = -45)-%(a = 0){1+k2}  

s2{ 1 - 3k2} 9 

(7) 

Here %(a = O) ,G(a  = 45) etc. are the mean-square voltages of the fluctuating 
component in the planes and at the yaw orientations indicated. The above systems 
of equations have been derived on the assumption that third- and higher-order 
correlations are negligible compared with the second-order correlations and k4 = 0. 
From the system of equations it can be seen that six measurements are to be made : 
four in the (2, y)-plane consisting of a mean voltage at  a = 0" and three mean-square 
values of the fluctuating voltage at  a = 0", 45" and -45", and two mean-square 
values at a = +45" and -45" in the (z, 2)-plane. The expression for the cross 
correlation UW can also be written in terms of these measurements. It has not been 
included in this paper. 
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Method 11. 

corresponding planes is 
The system of equations for Method I1 for the same hot-wire orientations in the 

1 (8) 

=(a = 0) 
82 ’ 

{a2 +G}+k2G+h2? = I 

where=(a = 0), %(a = 45) etc. are the mean squares of the hot-wire instantaneous 
output voltage in the respective planes and at  the orientations indicated. This 
system requires measurement of five squared voltages at a point to solve for the 
unknowns ( D2 +2), ?,s, UV and Uur. The expression for UW has not been included. 
It is obvious that one more measurement is required to separate the terms O2 and 
u2. This is the inherent problem in this method. It is to be noted here that the 
expressions are in terms of the time average of the squared voltage as against the 
mean-square values of the fluctuating voltage and the mean voltage in Method I. 

- 

3. Monte Carlo testing procedure 
The procedure adopted is essentially that followed by Krutchkoff (1967) for 

evaluating the direct and indirect regression methods. The procedure followed here 
can be divided into two major parts. The first part deals with the generation of 
pseudo turbulence using random-number generators, calculation of the average 
stress field from the generated turbulence and the use of (6) to obtain the voltage 
information. The second part deals with the comparison of the two methods and a 
study of the effects of measurement errors. The voltage information obtained in the 
first part forms an input to the second part. The stress field obtained in the first part 
serves as a standard to compare the Reynolds stresses obtained by using the systems 
of equations for Method I and Method 11. 

A t  the outset, the constants occurring in (6) viz. s, k ,  h, and the mean velocity (0) 
are assigned typical values without any loss of generality (see Krutchkoff). Using the 
random-number generator a set of u-, v- and w-values are now picked up with 
preassigned means and standard deviations. The mean was, of course, set at zero and 
the standard deviations were varied to change the pseudo turbulence levels. The set 
of u-, v- and w-values were used in (6) and the corresponding equation in the 
(2, 2)-plane at different orientations mentioned earlier, to obtain five values of the 
instantaneous voltages E,,(a = 0), EZy(a = + 45), E,,(a = -45), E,,(a = + 45) and 
Ezz(a = -45). From u, v and w the instantaneous values of the stresses u2, v2, w2 and 
uv-values can be computed. The random-number generator is again used to choose 
another set of (u, v, w) and the above procedure is repeated over a large number of 
trials. The ensemble averages of the Reynolds stress u;, v;, w; and TiEo are found using 
the instantaneous voltage values, obtained over a large number of trials. It is a simple 
matter to determine the ensemble averages of the voltages E2, E and 2 for different 

_ _ _  

_ _  
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orientations in different planes. Here, the ergodic hypothesis is assumed to apply. 
Thus, the standard values for the Reynolds stresses and the corresponding time- 
averaged voltage values are generated. 

The second part consists of introducing errors into the values of U ,  IP, E and 2, 
the yaw angle a and the calibration constants 5 and k .  It should be pointed out that 
h is assumed error-free throughout the analysis. Random-number generators are then 
used to choose errors in these quantities with a preassigned standard deviation. Using 
these perturbed values and the systems of equations for Method I and Method 11, 
the mean velocity and the Reynolds stresses are obtained for both the methods. 
These values are then compared with the standard values generated for the stresses 
in part I. The procedure is repeated over a large number of trials to estimate the 
effects of errors in the aforementioned quantities and to compare the two methods. 
The turbulence levels can be varied by changing the standard deviations in u, v and 
w keeping Bfixed. The whole procedure is then repeated to study their effects. The 
comparisons are based on the normalized standard deviations in the Reynolds 
stresses expressed as percentages, viz. [(ug-ui) x 100]/2, etc. Here q, etc. are the 
stresses obtained using the corresponding method and 2, etc. are the standard values 
generated. 

_ -  - 

_ _  

4. Numerical experiments 
The numerical experiments were carried out on an IBM 3031 computer based on 

the logic indicated. The IBM package ‘RANDU’ was used for generating the random 
numbers. The numerical experiment consisted of testing the random-number gener- 
ator, determination of the number of trials required to obtain reliable results and 
finally carrying out the required experiments. 

The randorn-number generator produces numbers, the mean and standard deviation 
of which differ slightly from the preset values. This would introduce errors in the final 
result. Hence the random numbers generated were modified by adding a fixed 
quantity to obtain (the desired mean exactly). This fixed quantity was the difference 
between the desired mean and the actual mean of the random numbers obtained. The 
numbers thus obtained were multiplied by a constant factor such that the required 
standard deviation was also exactly obtained. This constant factor was equal to the 
ratio of the desired standard deviation to the actual standard deviation obtained after 
the first modification of the random numbers. Further, one more condition was 
stipulated on u and v to obtain a non-zero cross-product term UV. The condition was : 
whenever u was positive, w was assigned a negative value and vice versa. This 
condition amounted to assuming the sign of the slope of the mean velocity at  the 
hypothetical point of ‘measurement ’ based on the mixing-length model (see 
Schlichting 1968). These operations can be shown not to affect the characteristics of 
the generated random numbers (see Hamming 1962). The logic indicated was 
incorporated in the software. 

The second step was to determine the number of trials required to generate a 
reliable pseudo turbulence field. The criterion chosen was that the ensemble average 
of the shear stress (Go), computed from the field generated, be independent of the 
number of trials. Since modification of the random numbers, described earlier, 
yielded a constant value for ui, WE and 3 independent of the number of trials, the 
criterion was fixed based on the UVo value. The effect of the seed value, required to 
initiate the random-number generator, was also investigated. To determine the 
number of trials required to generate a reliable pseudo turbulence field, the mean 

_ _  
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velocity and the constants occurring in (6) needed to be prescribed. The typical 
values assigned were U =  25 m/s, s = 0.3 volts/m/s, a = + 4 5 O ,  k = 0.2 and h = 1.0. 
The standard deviations of the errors in s, a, k, Band the voltages were set at zero. 
The standard deviations of the fluctuating velocity components u, v and w were set 
at  10 % of the mean velocity. Keeping these factors constant, the number of trials 
was varied between 5 and 40000 to determine the number of trials at which (2,) 
attained a constant value. The number of trials required for the second part, when 
measurement errors were introduced, was arbitrarily set at 5000 trials. From 
previous work (see Swaminathan, Rankin & Sridhar 1984) this number is considered 
to be large enough to yield reliable results. 

The numerical experiments were then carried out to estimate the approximation 
involved in Method I and its variation with turbulence intensity, to study the effects 
of measurement errors in s, a, k, U ,  E2 and 2, and finally, to evaluate the two 
methods. To estimate the truncation error in Method I, the standard deviations in 
measurement errors were set a t  zero. Under these conditions, Method I1 should yield 
the same results for the Reynolds stresses as the standard since no approximations 
are involved. However, Method I is likely to produce deviations from the stress field 
generated due to truncation and the consequent approximation involved. The 
difference in the Reynolds stresses between these two methods would then give an 
estimate of this truncation error in Method I. The effect of truncation on the mean 
velocity, determined using Method I, is described below. From the expression for 
mean velocity in (7),  we can write 

- -  

EZY(a = 0) k22 h 2 2  

= 1 +,+1-+03. 
SU 2u 2u 

(9) 

The product so can be determined from the assumed values of s and n. This 
represents the mean voltage output E,  of the hot wire at a = 0 and with no 
turbulence present in the stream. Ez,(a = 0) represents the mean voltage generated 
using random numbers when turbulence is present. From the turbulence field 
generated the quantities 3 and 2 are known. Hence the right-hand side of the above 
equation can be independently evaluated to the third order of accuracy and is the 
commonly used turbulence factor f. If the right-hand side is evaluated without any 
truncation it may be considered as an exact factor fexact. In physical experiments, 
feXact cannot be obtained because Uis not known a priori and because of the difficulty 
in measuring the higher-order terms. In  this numerical experiment, however, fexact 
can be determined from the values of s, 0 and EzY. One may rewrite (9) as 

fexact = f +03. 
The variations off and fexact with turbulence intensity were studied by changing the 
levels between 0 and 50 yo, keeping all the other factors constant. 

To study the effects of measurement errors in 0, s, k, and the voltages two separate 
experiments were carried out. For this exercise the yaw angle a was assumed 
error-free. In the first, a uniform error of 1 % was introduced in all the quantities 0, 
s, k, and 2 and the normalized standard deviations in the Reynolds stresses were 
obtained. The error in only one of the above quantities was then held at 1 % and the 
errors in other quantities were set a t  zero. The experiment was repeated to estimate 
the individual contribution of the various quantities to the total error. This 
experiment was carried out for different turbulence intensities in the range 10-50 % . 
In the second experiment, the errors in these quantities were set at the worst possible 
combination based on past experience. The standard deviations of the errors chosen 
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FIGURE 2. Effect of number of trials on zo. Standard deviation in u, v and w = 2.5 m/s, 
s = 0.3 volts/m/s, k = 0.2, h = 1.0 and o= 25 m/s. 

were 1 % in 0, 0.5% in F and 2, 10% in s and 20% in k. For this combination of 
errors, the normalized standard deviations in the Reynolds stresses were obtained 
for both the methods. Then, the error in each quantity was varied between zero and 
the limit chosen while keeping the errors in the other quantities fixed a t  the values 
chosen. In  order to estimate the effect of error in the yaw angle, the errors in the 
other quantities were set at zero. This was done to  isolate the effects of errors in a. 
Only fixed types of errors in a were treated. This is justified from a practical point 
of view. The errors in a were varied in the range 0-2 %. The experiments on the effect 
of measurement errors were carried out for only two values of turbulence intensity, 
10% and 50%. 

5. Results and discussion 
5.1. Number of trials required 

The number of trials required to generate a reliable pseudo turbulence field is based 
on the result indicated in figure 2. This figure gives the variation of UV, with the 
number of trials. It is seen that the Reynolds shear stress attains a constant value 
beyond 10000 trials. However, the number of trials was set at 15000 to  allow a factor 
of safety. This number was held constant for all subsequent experiments. Holding 
this constant, the seed value required to  initiate the random-number generator was 
varied to  ensure that no significant changes were observed. 

5.2.  Truncation errors in Method I 
The results of the variation off and feXact with turbulence intensity is given in figure 
3. The percentage variation between the two is in the range 0-1.5 % as the intensity 
is changed from 0 to  50 % , indicating that the second-order corrections for the mean 
velocity yields accurate results for the range studied. The common assumption that 
f = 1 is seen to be justified only up to  a 10 yo turbulence intensity beyond which the 
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FIGURE 3. Variation of turbulence correction factor for mean velocity with turbulence 
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errors in the mean velocity are significant. The variation of the errors introduced in 
the Reynolds stresses, calculated using Method I, due to the truncation of the series 
expansion with turbulence intensity can be seen in figure 4 for the values of s, k and 
0 chosen. As expected Method I1 produces insignificant errors in u2, v2 and 737. It 
is believed that these insignificant errors are due to roundoff errors. From this figure, 
it is seen that beyond 20 % turbulence intensity, the errors due to truncation increase 
considerably. Errors in 3 and UV due to truncation are seen to be higher compared 
with errors in 2. The errors in $ and 3 are almost identical and hence have not 
been included in the figure. For turbulence intensities below 20%, the truncation 
errors in Reynolds stresses can be held below 10% for the values of the constants 
chosen. By repeating the numerical experiment, it  is a simple matter to estimate the 
truncation error should the values of s, k and 

_ _  

change. 

5.3. Effects of measurement errors 
The results obtained by choosing a uniform 1 % measurement error in the quantities 
s, k ,  U ,  E2 and 2 and zero error in a for the cases of low and high turbulence 

- -  
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FIGURE 4. Effect of turbulence intensity (errors in s, - k, 0, F - and 3 = 0%). 
Method 1 : 0,G;  El, 2: A, E. Method 2: 0 ,  u2; m, v 2 ;  A: E. 

Method I :  Method I1 : 
Percentage standard Percentage standard 

deviation in deviation in 
- - - - - 

U2 V2 W2 uv - - - 
Remarks U2 W2 W2 uv 

1 % error in s 2.3 3.3 3.4 3.2 337.0 67.0 104.0 61.0 

1 yo error in s 2.0 2.4 2.7 2.9 202.0 2.0 2.0 2.0 
1 % error in k 0.5 1.4 1.9 2.2 4.2 4.1 4.1 0.1 
1 % error in l7 0.5 1.4 1.9 2.2 200.0 0.0 0.0 0.0 
1 % error in H 0.5 1.4 1.9 2.2 182.0 66.0 104.0 61.0 

k, g, F and 2 

1 yo error in e2 1.1 2.6 2.8 2.5 0 0 0 0 
0 yo error in all of 0.5 1.4 1.9 2.2 0 0 0 0 

- 

the quantities 

TABLE 1. Contribution to errors in Reynolds stresses by various parameters 
(10 Yo turbulence intensity) 
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Method I :  Method I1 : 
Percentage standard Percentage standard 

deviation in deviation in 

- - - - 
U2 US W2 uu - - - - 

Remarks U P  U2 W2 uu 

1 yo error in s 18.0 46.7 45.2 48.8 17.3 4.8 7.8 5.1 

1 yo error in s 18.0 46.7 45.2 48.8 10.0 2.0 2.0 2.0 
k, u, F and 2 

1 yo error in k 18.0 46.7 45.2 48.8 0.1 0.2 0.2 0.1 
1 yo error in i7 18.0 46.7 45.2 48.8 8.0 0.0 0.0 0.0 

1 yo error in 2 18.0 46.7 45.2 48.8 0 0 0 0 
0% error in all of 18.0 46.7 45.2 48.8 0 0 0 0 

1 Yo error in F 18.0 46.7 45.2 48.8 11.6 4.4 7.5 4.7 

the quantities 

TABLE 2. Contribution to errors in Reynolds stresses by various parameters 
(50 % turbulence intensity) 

I I I 

0 10 20 30 40 50 

Percentage turbulence intensity 

FIQURE 5. Effect of turbulence intensity (errors in s, k, g, @ and 2 = 1 yo). 
Method 1: 0,2;  m, 3; 8, E. Method 2: 0 ,2 ;  H, 3;  A, E. 
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5 A z. = 
V 4 4 4 

I I 1 

C I .- 

intensities of 10% and 50% are given in tables 1 and 2. Comparison of the tables 
indicates that Method I1 yields lower errors in the ensemble-averaged variables a t  
high turbulence intensity and Method I a t  low levels. From table 1 for low turbulence 
levels it is seen that for Method I a 1 o/o error in all the measurable quantities produces 
errors in Reynolds stresses which are comparable to the truncation errors (compare 
values in row one to the values in row seven of table 1 ) .  At low turbulence levels, 
Method I1 yields considerable errors, especially in 2. For this case it is seen that 
Method I is preferable. The system of equations for Method 11 is ill-conditioned for 
the case of low turbulence and hence the results are sensitive to measurement errors. 
The major contributing factors to the overall error are the errors in s, the voltages 
and mean velocity in the case of Method 11. Table 2 gives the results for the 
high-turbulence case. For Method I ,  i t  is seen that the truncation errors are so high 
(values in the last row of the table) that the errors introduced in the various 
quantities have no effect on the final result. Method 11, however, yields reasonable 
overall results for the high-turbulence case. Here again the major contributing 
factors are the errors in s, Uand the voltages. It is consistently seen that effects of 

Percentage error in k 

FIQURE 6 .  Effect - of variation of errors in k on Reynolds stresses (errors in s = lo%, o= 1 %, 
Ee = 0.5 % and e2 = 0.5 %). Low-turbulence case: O,G, Method 1 ; m, 3, Method 2; A, E, Method 
1; v, E, Method 2. High-turbulence case: .,7, Method 1 ; m, 7, Method 2; A, E, Method 1 ; 
v, E, Method 2. 

- 
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100 

10 

1 

FIGURE 7. Effect 
El = 0.5 % and? 
1 ; V , a, Method 
V, E,  Method 2. 

- 

0 2 4 6 8 10 

Percentage error in s 

of variation of errors in 8 on Reynolds stresses (errors in k = 20%, g =  1 %, 
= 0.5%).Low-turbulencecase: 0,7, Method 1 ;  m,G,Method2;&TE,Method 
2. High-turbulence caae: .,G, Method 1; ., 2, Method 2; A, E, Method 1 ; 

errors in k are insignificant and that, for Method 11, measurement of Usignificantly 
affects the determination of 2 especially for the low-turbulence case. 

The effect of turbulence intensity for the case of 1 % uniform error in all the 
quantities is shown in figure 5.  It can be observed that for Method I the error in 2 
is lower compared with 2 and UV throughout the range of turbulence intensity 
studied. The opposite is true for Method 11. Below 20% turbulence level, Method I 
is recommended and above 40-50 % Method I1 is recommended. It should be pointed 
out that the values of standard deviation in errors chosen may be unrealistic. Should 
a more reliable estimate be available, it is a simple matter to generate the results and 
obtain the range of validity of these methods with regards to the turbulence 
intensity. If the standard deviations of the errors in the measured quantities are 
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10 1 1 1 I I 

0 0.1 0.2 0.3 0.4 0.5 

Percentage error in E" or 2 
FIQURE 8. Effect of variation of errors in F or 2 on Reynolds stresses (errors in s = 10 %, 0 = 1 % 
and k = 20%). Low-turbulence case: a,?, Method 1 ; m, ?, Method 2;  A, E,  Method 1; V , ;i2zi, 

Method 2. High-turbulence case: 0 ,  2, Method 1 ;  ., 2, Method 2 ;  A, ;i2zi, Method 1 ;  V, E, 
Method 2. 

known, then the Monte Carlo procedure, described earlier, can be used to determine 
the uncertainties in the measured quantities. The method suggested here, which is 
an extension of that proposed by Moffat (1982) for determining the uncertainties in 
the measurements, includes the use of a random-number generator to simulate 
random errors within the limits specified and averaging the effects over large number 
of trials. It is believed that this would yield a more reliable estimate of the 
uncertainties in the measured quantities. The logic is simple and it should pose no 
problem to incorporate it in the data-reduction routine. 

In the second experiment to determine the effects of errors, the standard 
deviations of the errors in s, k, c and voltages were set at 10, 20, 1 and 0.5% 
respectively with the error in a being set a t  zero. These values correspond to the worst 
possible combination of the errors based on past experience. The results obtained by 
varying the errors in k between 0-20 yo of the mean value of 0.2, keeping all the other 
errors at the chosen value, are shown in figure 6 for the cases of both low and high 
turbulence intensities. It is seen for the values chosen, that the errors in k have an 
insignificant effect on the final results. The error values obtained in Reynolds stresses 
are large indicating that the errors assigned are also large. The effects of the variation 
of errors in s and voltages are shown in figures 7 and 8 respectively. From these plots, 
only the errors in s seem to have a significant effect on the accurate determination 
of the Reynolds stresses. However, no particular trend can be discerned from this 



Evaluation of equations for  turbulence by the Monte Carlo technique 17 

lo00 

I 0 0  

B 
8 

1% 

W 

C 

U 
.- 

.: 10 
'5 
8 

a" t 
1 

0. I? 

0 1 .o 2.0 

Percentage error in a 

FIQURE 9. Effect of variation of errors in a on Reynolds stresses (error in 8,  0, and 3 = 0%). 
Low-turbulence case: 0,  3, Method 1 ;  m, 2, Method 2; A, TiV, Method 1;V,  TiV, Method 2. 
High-turbulence caae: .,?, Method 1 ;  ., 3, Method 2; A, E, Method 1 ;  V, TiV, Method 2. 

plot. For the combination of errors prescribed here, it  can be seen from figures 5-7 
that Method I is recommended for both the low- and the high-turbulence-level cases. 
A more rigorous procedure would be to repeat the numerical experiment for different 
combinations of the errors in s, 0, k and the voltages and to study the effects of 
variation of these errors. 

The effect of errors in a on the percentage standard deviation in 3 and u2, is shown 
in figure 9 for the case of zero errors in voltages, s, k and 0. It can be seen that 
Method I is insensitive to errors in a. The 2 parameter is, however, seen to be 
affected by errors in a for Method 11. The effect of an error in a would be to cause an 
error in the mean and r.m.8. voltages measured. This, in turn, would cause errors 
in the Reynolds stresses. The truncation error in Method I for the high-turbulence 
case and the inappropriateness of Method I1 in the low-turbulence range, should be 
taken into account while interpreting the data. These errors are large enough to 
suppress any trends with respect to a. 
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6. Conclusions 
The Monte Carlo testing procedure has been successfully used to  simulate turbulence 

and the corresponding hot-wire response from the assumed analytical expression. 
This procedure has been used to compare the two methods of obtaining the 
time-averaged mean velocity and Reynolds stresses. Also included in the study are 
the estimation of the truncation error in the conventional method, the effects of 
turbulence intensity and measurement errors on the results. The results indicate that 
the truncation errors in Method I for Reynolds stresses are less than 10% when 
turbulence levels are below 20%. For higher values of turbulence level, the error 
increases rapidly. For mean velocity measurement by Method I, the truncation errors 
are below 1.5% for turbulence intensities as high as 50%. The choice of method 
should be based on both the turbulence levels and the measurement errors expected. 
If the measurement errors are of the order of 1 % in all the quantities, then Method 
I is recommended for turbulence levels below 20% and Method I1 for levels above 
40-50 yo. If measurement errors are expected to be high (i.e. of the order 10-20 yo in 
s and k) Method I proves to be relatively better. To obtain accurate results, the 
hot-wire sensitivity s and the voltages have to  be determined as accurately as 
possible. The error in the yaw sensitivity k has negligible effect on the results 
obtained. Finally, a rigorous method for uncertainty analysis has also been introduced, 
which makes use of random-number generators and is based on Monte Carlo testing. 
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